Inversion Formula for Orbital Integrals on Reductive Lie Groups
نویسندگان
چکیده
منابع مشابه
Stable Nilpotent Orbital Integrals on Real Reductive Lie Algebras
This paper proves a stable analog of Rossmann’s formula for the number of G(R)-orbits in g ∩O, where O is a nilpotent orbit in gC.
متن کاملWeyl’s character formula for non-connected Lie groups and orbital theory for twisted affine Lie algebras
We generalize I. Frenkel’s orbital theory for non twisted affine Lie algebras to the case of twisted affine Lie algebras using a character formula for certain non-connected compact Lie groups.
متن کاملOrbital Integrals for Linear Groups
For a linear group G acting on an absolutely irreducible variety X over Q, we describe the orbits of X(Qp) under G(Qp) and of X(Fp((t))) under G(Fp((t))) for p big enough. This allows us to show that the degree of a wide class of orbital integrals over Qp or Fp((t)) is ≤ 0 for p big enough, and similarly for all finite field extensions of Qp and Fp((t)).
متن کاملGerbes on Complex Reductive Lie Groups
Let K be a compact Lie group with complexification G. We construct by geometric methods a conjugation invariant gerbe on G; this then gives by restriction an invariant gerbe on K. Our construction works for any choice of level. When K is simple and simply-connected, the level is just an integer as usual. For general K, the level is a bilinear form b on a Cartan subalgebra where b satisfies a qu...
متن کامل7 Orbital Integrals for Linear Groups
For a linear group G acting on an absolutely irreducible variety X over Q, we describe the orbits of X(Qp) under G(Qp) and of X(Fp((t))) under G(Fp((t))) for p big enough. This allows us to show that the degree of a wide class of orbital integrals over Qp or Fp((t)) is ≤ 0 for p big enough, and similarly for all finite field extensions of Qp and Fp((t)).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1995
ISSN: 0022-1236
DOI: 10.1006/jfan.1995.1140